It looks like you're new here. If you want to get involved, click one of these buttons!

- 140.7K All Categories
- 103.5K Programming Languages
- 6.4K Assembler Developer
- 1.9K Basic
- 39.9K C and C++
- 2.9K C#
- 7.9K Delphi and Kylix
- 4 Haskell
- 9.7K Java
- 4.1K Pascal
- 1.3K Perl
- 2K PHP
- 536 Python
- 37 Ruby
- 4.4K VB.NET
- 1.6K VBA
- 20.8K Visual Basic
- 2.6K Game programming
- 315 Console programming
- 90 DirectX Game dev
- 1 Minecraft
- 110 Newbie Game Programmers
- 2 Oculus Rift
- 9K Applications
- 1.8K Computer Graphics
- 736 Computer Hardware
- 3.5K Database & SQL
- 535 Electronics development
- 1.6K Matlab
- 628 Sound & Music
- 257 XML Development
- 3.3K Classifieds
- 198 Co-operative Projects
- 194 For sale
- 190 FreeLance Software City
- 1.9K Jobs Available
- 602 Jobs Wanted
- 206 Wanted
- 2.9K Microsoft .NET
- 1.7K ASP.NET
- 1.1K .NET General
- 3.4K Miscellaneous
- 8 Join the Team
- 82 User Profiles
- 354 Comments on this site
- 69 Computer Emulators
- 2.1K General programming
- 187 New programming languages
- 620 Off topic board
- 186 Mobile & Wireless
- 60 Android
- 124 Palm Pilot
- 337 Multimedia
- 153 Demo programming
- 184 MP3 programming
- 0 Bash scripts
- 23 Cloud Computing
- 53 FreeBSD
- 1.7K LINUX programming
- 370 MS-DOS
- 0 Shell scripting
- 321 Windows CE & Pocket PC
- 4.1K Windows programming
- 929 Software Development
- 416 Algorithms
- 68 Object Orientation
- 89 Project Management
- 93 Quality & Testing
- 262 Security
- 7.6K WEB-Development
- 1.8K Active Server Pages
- 61 AJAX
- 2 Bootstrap Themes
- 55 CGI Development
- 28 ColdFusion
- 224 Flash development
- 1.4K HTML & WEB-Design
- 1.4K Internet Development
- 2.2K JavaScript
- 35 JQuery
- 297 WEB Servers
- 143 WEB-Services / SOAP

saurabh.sama
Member Posts: **1**

in Matlab

guys,

i have to evaluate surface area.. the surface looks like a quadraticsurface on x-y plane . i broke the whole curve in 3 parts and performed curve fitting on it. after this the part of the curve in positive x direction is revolved around the y axis creating a paraboloid type of surface(Note: the axis of fitted parabola is diff from the y axis so the curve will differ in positive x direction from negative x direction)

now this is how i m trying to evaluate the surface area of the surface i generated.

this is d code i was using to findout the surface integral

syms r theta

x=2.515251898 + r*cos(theta) ;

z=2.515251898 + r*sin(theta) ;

y= (x.^2 + z.^2 )*0.0152151093240165

R=[x y z]

Ru = diff(R,r)

Rv = diff(R,theta)

g = cross(Ru,Rv)

ro=0

rf = 30.0499755714919

t= g(1)^2 +g(2)^2 +g(3)^2

S = int(int(sqrt(t), r,ro,rf), theta,0,pi());

pretty(S)

eval(S)

the problem is it is not able to evaluate the surface integral.. it's giving errors

Warning: Explicit integral could not be found.

is their any other way to evaluate the surface area or if there is any problem in coding please help me out

i have to evaluate surface area.. the surface looks like a quadraticsurface on x-y plane . i broke the whole curve in 3 parts and performed curve fitting on it. after this the part of the curve in positive x direction is revolved around the y axis creating a paraboloid type of surface(Note: the axis of fitted parabola is diff from the y axis so the curve will differ in positive x direction from negative x direction)

now this is how i m trying to evaluate the surface area of the surface i generated.

this is d code i was using to findout the surface integral

syms r theta

x=2.515251898 + r*cos(theta) ;

z=2.515251898 + r*sin(theta) ;

y= (x.^2 + z.^2 )*0.0152151093240165

R=[x y z]

Ru = diff(R,r)

Rv = diff(R,theta)

g = cross(Ru,Rv)

ro=0

rf = 30.0499755714919

t= g(1)^2 +g(2)^2 +g(3)^2

S = int(int(sqrt(t), r,ro,rf), theta,0,pi());

pretty(S)

eval(S)

the problem is it is not able to evaluate the surface integral.. it's giving errors

Warning: Explicit integral could not be found.

is their any other way to evaluate the surface area or if there is any problem in coding please help me out

Terms of use / Privacy statement / Publisher: Lars Hagelin

Programmers Heaven articles / Programmers Heaven files / Programmers Heaven uploaded content / Programmers Heaven C Sharp ebook / Operated by CommunityHeaven

© 1997-2015 Programmersheaven.com - All rights reserved.