It looks like you're new here. If you want to get involved, click one of these buttons!

- 141.1K All Categories
- 103.8K Programming Languages
- 6.5K Assembler Developer
- 1.9K Basic
- 40K C and C++
- 2.9K C#
- 7.9K Delphi and Kylix
- 4 Haskell
- 9.7K Java
- 4.1K Pascal
- 1.3K Perl
- 2K PHP
- 551 Python
- 37 Ruby
- 4.4K VB.NET
- 1.6K VBA
- 20.9K Visual Basic
- 2.6K Game programming
- 317 Console programming
- 93 DirectX Game dev
- 1 Minecraft
- 112 Newbie Game Programmers
- 2 Oculus Rift
- 9K Applications
- 1.8K Computer Graphics
- 745 Computer Hardware
- 3.5K Database & SQL
- 535 Electronics development
- 1.6K Matlab
- 628 Sound & Music
- 258 XML Development
- 3.3K Classifieds
- 199 Co-operative Projects
- 199 For sale
- 190 FreeLance Software City
- 1.9K Jobs Available
- 604 Jobs Wanted
- 211 Wanted
- 2.9K Microsoft .NET
- 1.8K ASP.NET
- 1.1K .NET General
- 3.4K Miscellaneous
- 7 Join the Team
- 356 Comments on this site
- 70 Computer Emulators
- 2.1K General programming
- 187 New programming languages
- 637 Off topic board
- 220 Mobile & Wireless
- 92 Android
- 126 Palm Pilot
- 340 Multimedia
- 156 Demo programming
- 184 MP3 programming
- Bash scripts
- 27 Cloud Computing
- 53 FreeBSD
- 1.7K LINUX programming
- 371 MS-DOS
- Shell scripting
- 321 Windows CE & Pocket PC
- 4.1K Windows programming
- 943 Software Development
- 417 Algorithms
- 68 Object Orientation
- 92 Project Management
- 95 Quality & Testing
- 270 Security
- 7.7K WEB-Development
- 1.8K Active Server Pages
- 62 AJAX
- 6 Bootstrap Themes
- 55 CGI Development
- 28 ColdFusion
- 224 Flash development
- 1.4K HTML & WEB-Design
- 1.4K Internet Development
- 2.2K JavaScript
- 37 JQuery
- 309 WEB Servers
- 155 WEB-Services / SOAP

elika91
Member Posts: **1**

in Algorithms

This is an exercise from my Informatics course:

Create an algorithm which finds if the minimum of two diagonals is the

same element of a square matrix with N x N elements.

I have no problem with creating the algorithm, once I find the correct

interpretation of the exercise.

The professor doesn't give any further clues.

I thought of these interpretation possibilities (assuming the first

diagonal is [a11,a22,a33,a44,a55...ann] and the second is [a1n,

a2(n-1), a3(n-2)...an1] ) :

1- Find the minimum of the first diagonal and then the second's and

compare them if they have the same value.

2- Do the same as above, but also check if they are the same element

(same indexes) which means if they are the intersecting element for

the two diagonals. This would work only if N would be an odd number.

If N is an even number the diagonals don't intersect.

3- Find the minimum of all elements of the two diagonals "joined"

together. Then find the minimum of the matrix. Check if they have the

same value.

4- Do the same as above, but also check if the minimum for both the

diagonals is the same element with the minimum of the matrix (check if

they have the same indexes).

What's your opinion? Judging by the way the exercise is expressed

which interpretation could me more possible? If there is any other

interpretation possible, what is it?

Thanks in advance.

Create an algorithm which finds if the minimum of two diagonals is the

same element of a square matrix with N x N elements.

I have no problem with creating the algorithm, once I find the correct

interpretation of the exercise.

The professor doesn't give any further clues.

I thought of these interpretation possibilities (assuming the first

diagonal is [a11,a22,a33,a44,a55...ann] and the second is [a1n,

a2(n-1), a3(n-2)...an1] ) :

1- Find the minimum of the first diagonal and then the second's and

compare them if they have the same value.

2- Do the same as above, but also check if they are the same element

(same indexes) which means if they are the intersecting element for

the two diagonals. This would work only if N would be an odd number.

If N is an even number the diagonals don't intersect.

3- Find the minimum of all elements of the two diagonals "joined"

together. Then find the minimum of the matrix. Check if they have the

same value.

4- Do the same as above, but also check if the minimum for both the

diagonals is the same element with the minimum of the matrix (check if

they have the same indexes).

What's your opinion? Judging by the way the exercise is expressed

which interpretation could me more possible? If there is any other

interpretation possible, what is it?

Thanks in advance.

Terms of use / Privacy statement / Publisher: Lars Hagelin

Programmers Heaven articles / Programmers Heaven files / Programmers Heaven uploaded content / Programmers Heaven C Sharp ebook / Operated by CommunityHeaven

© 1997-2017 Programmersheaven.com - All rights reserved.