It looks like you're new here. If you want to get involved, click one of these buttons!

- 140.6K All Categories
- 103.5K Programming Languages
- 6.4K Assembler Developer
- 1.9K Basic
- 39.9K C and C++
- 2.9K C#
- 7.9K Delphi and Kylix
- 4 Haskell
- 9.7K Java
- 4.1K Pascal
- 1.3K Perl
- 2K PHP
- 533 Python
- 37 Ruby
- 4.4K VB.NET
- 1.6K VBA
- 20.8K Visual Basic
- 2.6K Game programming
- 314 Console programming
- 90 DirectX Game dev
- 1 Minecraft
- 110 Newbie Game Programmers
- 2 Oculus Rift
- 9K Applications
- 1.8K Computer Graphics
- 734 Computer Hardware
- 3.4K Database & SQL
- 535 Electronics development
- 1.6K Matlab
- 628 Sound & Music
- 257 XML Development
- 3.3K Classifieds
- 198 Co-operative Projects
- 194 For sale
- 190 FreeLance Software City
- 1.9K Jobs Available
- 602 Jobs Wanted
- 203 Wanted
- 2.9K Microsoft .NET
- 1.7K ASP.NET
- 1.1K .NET General
- 3.4K Miscellaneous
- 7 Join the Team
- 8 User Profiles
- 354 Comments on this site
- 69 Computer Emulators
- 2.1K General programming
- 187 New programming languages
- 619 Off topic board
- 182 Mobile & Wireless
- 56 Android
- 124 Palm Pilot
- 335 Multimedia
- 151 Demo programming
- 184 MP3 programming
- 0 Bash scripts
- 22 Cloud Computing
- 53 FreeBSD
- 1.7K LINUX programming
- 370 MS-DOS
- 0 Shell scripting
- 320 Windows CE & Pocket PC
- 4.1K Windows programming
- 924 Software Development
- 412 Algorithms
- 68 Object Orientation
- 89 Project Management
- 93 Quality & Testing
- 261 Security
- 7.6K WEB-Development
- 1.8K Active Server Pages
- 61 AJAX
- 2 Bootstrap Themes
- 55 CGI Development
- 28 ColdFusion
- 224 Flash development
- 1.4K HTML & WEB-Design
- 1.4K Internet Development
- 2.2K JavaScript
- 35 JQuery
- 296 WEB Servers
- 136 WEB-Services / SOAP

elika91
Member Posts: **1**

in Algorithms

This is an exercise from my Informatics course:

Create an algorithm which finds if the minimum of two diagonals is the

same element of a square matrix with N x N elements.

I have no problem with creating the algorithm, once I find the correct

interpretation of the exercise.

The professor doesn't give any further clues.

I thought of these interpretation possibilities (assuming the first

diagonal is [a11,a22,a33,a44,a55...ann] and the second is [a1n,

a2(n-1), a3(n-2)...an1] ) :

1- Find the minimum of the first diagonal and then the second's and

compare them if they have the same value.

2- Do the same as above, but also check if they are the same element

(same indexes) which means if they are the intersecting element for

the two diagonals. This would work only if N would be an odd number.

If N is an even number the diagonals don't intersect.

3- Find the minimum of all elements of the two diagonals "joined"

together. Then find the minimum of the matrix. Check if they have the

same value.

4- Do the same as above, but also check if the minimum for both the

diagonals is the same element with the minimum of the matrix (check if

they have the same indexes).

What's your opinion? Judging by the way the exercise is expressed

which interpretation could me more possible? If there is any other

interpretation possible, what is it?

Thanks in advance.

Create an algorithm which finds if the minimum of two diagonals is the

same element of a square matrix with N x N elements.

I have no problem with creating the algorithm, once I find the correct

interpretation of the exercise.

The professor doesn't give any further clues.

I thought of these interpretation possibilities (assuming the first

diagonal is [a11,a22,a33,a44,a55...ann] and the second is [a1n,

a2(n-1), a3(n-2)...an1] ) :

1- Find the minimum of the first diagonal and then the second's and

compare them if they have the same value.

2- Do the same as above, but also check if they are the same element

(same indexes) which means if they are the intersecting element for

the two diagonals. This would work only if N would be an odd number.

If N is an even number the diagonals don't intersect.

3- Find the minimum of all elements of the two diagonals "joined"

together. Then find the minimum of the matrix. Check if they have the

same value.

4- Do the same as above, but also check if the minimum for both the

diagonals is the same element with the minimum of the matrix (check if

they have the same indexes).

What's your opinion? Judging by the way the exercise is expressed

which interpretation could me more possible? If there is any other

interpretation possible, what is it?

Thanks in advance.

Terms of use / Privacy statement / Publisher: Lars Hagelin

Programmers Heaven articles / Programmers Heaven files / Programmers Heaven uploaded content / Programmers Heaven C Sharp ebook / Operated by CommunityHeaven

© 1997-2015 Programmersheaven.com - All rights reserved.